Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Plant ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38520090

RESUMO

In plants and mammals, non-homologous end-joining is the dominant pathway to repair DNA double-strand breaks, making it challenging to generate knock-in events. In this study, we identified two groups of exonucleases from the herpes virus and the bacteriophage T7 families that conferred an up to 38-fold increase in homology-directed repair frequencies when fused to Cas9/Cas12a in a tobacco mosaic virus-based transient assay in Nicotiana benthamiana. We achieved precise and scar-free insertion of several kilobases of DNA both in transient and stable transformation systems. In Arabidopsis thaliana, fusion of Cas9 to a herpes virus family exonuclease led to 10-fold higher frequencies of knock-ins in the first generation of transformants. In addition, we demonstrated stable and heritable knock-ins in wheat in 1% of the primary transformants. Taken together, our results open perspectives for the routine production of heritable knock-in and gene replacement events in plants.

2.
Plant Biotechnol J ; 22(5): 1238-1250, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38124296

RESUMO

Transient expression in Nicotiana benthamiana offers a robust platform for the rapid production of complex secondary metabolites. It has proven highly effective in helping identify genes associated with pathways responsible for synthesizing various valuable natural compounds. While this approach has seen considerable success, it has yet to be applied to uncovering genes involved in anthocyanin biosynthetic pathways. This is because only a single anthocyanin, delphinidin 3-O-rutinoside, can be produced in N. benthamiana by activation of anthocyanin biosynthesis using transcription factors. The production of other anthocyanins would necessitate the suppression of certain endogenous flavonoid biosynthesis genes while transiently expressing others. In this work, we present a series of tools for the reconstitution of anthocyanin biosynthetic pathways in N. benthamiana leaves. These tools include constructs for the expression or silencing of anthocyanin biosynthetic genes and a mutant N. benthamiana line generated using CRISPR. By infiltration of defined sets of constructs, the basic anthocyanins pelargonidin 3-O-glucoside, cyanidin 3-O-glucoside and delphinidin 3-O-glucoside could be obtained in high amounts in a few days. Additionally, co-infiltration of supplementary pathway genes enabled the synthesis of more complex anthocyanins. These tools should be useful to identify genes involved in the biosynthesis of complex anthocyanins. They also make it possible to produce novel anthocyanins not found in nature. As an example, we reconstituted the pathway for biosynthesis of Arabidopsis anthocyanin A5, a cyanidin derivative and achieved the biosynthesis of the pelargonidin and delphinidin variants of A5, pelargonidin A5 and delphinidin A5.


Assuntos
Antocianinas , Nicotiana , Nicotiana/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Glucosídeos , Regulação da Expressão Gênica de Plantas/genética
3.
Sci Rep ; 13(1): 20534, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996470

RESUMO

Treatment of potato plants with the pathogen-associated molecular pattern Pep-13 leads to the activation of more than 1200 genes. One of these, StPIP1_1, encodes a protein of 76 amino acids with sequence homology to PAMP-induced secreted peptides (PIPs) from Arabidopsis thaliana. Expression of StPIP1_1 is also induced in response to infection with Phytophthora infestans, the causal agent of late blight disease. Apoplastic localization of StPIP1_1-mCherry fusion proteins is dependent on the presence of the predicted signal peptide. A synthetic peptide corresponding to the last 13 amino acids of StPIP1_1 elicits the expression of the StPIP1_1 gene itself, as well as that of pathogenesis related genes. The oxidative burst induced by exogenously applied StPIP1_1 peptide in potato leaf disks is dependent on functional StSERK3A/B, suggesting that StPIP1_1 perception occurs via a receptor complex involving the co-receptor StSERK3A/B. Moreover, StPIP1_1 induces expression of FRK1 in Arabidopsis in an RLK7-dependent manner. Expression of an RLK from potato with high sequence homology to AtRLK7 is induced by StPIP1_1, by Pep-13 and in response to infection with P. infestans. These observations are consistent with the hypothesis that, upon secretion, StPIP1_1 acts as an endogenous peptide required for amplification of the defense response.


Assuntos
Arabidopsis , Phytophthora infestans , Solanum tuberosum , Solanum tuberosum/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo , Arabidopsis/metabolismo , Phytophthora infestans/fisiologia , Imunidade , Aminoácidos/metabolismo , Doenças das Plantas/genética
4.
Plants (Basel) ; 11(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36235483

RESUMO

In vivo localization of proteins using fluorescence-based approaches by fusion of the protein of interest (POI) to a fluorescent protein is a cost- and time-effective tool to gain insights into its physiological function in a plant cell. Determining the proper localization, however, requires the co-expression of defined organelle markers (OM). Several marker sets are available but, so far, the procedure requires successful co-transformation of POI and OM into the same cell and/or several cloning steps. We developed a set of vectors containing markers for basic cell organelles that enables the insertion of the gene of interest (GOI) by a single cloning step using the Golden Gate cloning approach and resulting in POI-GFP fusions. The set includes markers for plasma membrane, tonoplast, nucleus, endoplasmic reticulum, Golgi apparatus, peroxisomes, plastids, and mitochondria, all labelled with mCherry. Most of them were derived from well-established marker sets, but those localized in plasma membrane and tonoplast were improved by using different proteins. The final vectors are usable for localization studies in isolated protoplasts and for transient transformation of leaves of Nicotiana benthamiana. Their functionality is demonstrated using two enzymes involved in biosynthesis of jasmonic acid and located in either plastids or peroxisomes.

5.
Front Plant Sci ; 12: 682443, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177999

RESUMO

Betalains are pigments found in plants of the Caryophyllales order, and include the red-purple betacyanins and the yellow-orange betaxanthins. The red pigment from red beets, betanin, is made from tyrosine by a biosynthetic pathway that consists of a cytochrome P450, a L-DOPA dioxygenase, and a glucosyltransferase. The entire pathway was recently reconstituted in plants that do not make betalains naturally including potato and tomato plants. The amount of betanin produced in these plants was however not as high as in red beets. It was recently shown that a plastidic arogenate dehydrogenase gene involved in biosynthesis of tyrosine in plants is duplicated in Beta vulgaris and other betalain-producing plants, and that one of the two encoded enzymes, BvADHα, has relaxed feedback inhibition by tyrosine, contributing to the high amount of betanin found in red beets. We have reconstituted the complete betanin biosynthetic pathway in tomato plants with or without a BvADHα gene, and with all genes expressed under control of a fruit-specific promoter. The plants obtained with a construct containing BvADHα produced betanin at a higher level than plants obtained with a construct lacking this gene. These results show that use of BvADHα can be useful for high level production of betalains in heterologous hosts. Unlike red beets that produce both betacyanins and betaxanthins, the transformed tomatoes produced betacyanins only, conferring a bright purple-fuschia color to the tomato juice.

6.
Plant J ; 107(4): 1102-1118, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34143914

RESUMO

Tomato (Solanum lycopersicum L.) type VI glandular trichomes that occur on the surface of leaves, stems, young fruits and flowers produce and store a blend of volatile monoterpenes and sesquiterpenes. These compounds play important roles in the interaction with pathogens and herbivorous insects. Although the function of terpene synthases in the biosynthesis of volatile terpenes in tomato has been comprehensively investigated, the deciphering of their transcriptional regulation is only just emerging. We selected transcription factors that are over-expressed in trichomes based on existing transcriptome data and silenced them individually by virus-induced gene silencing. Of these, SlSCL3, a scarecrow-like (SCL) subfamily transcription factor, led to a significant decrease in volatile terpene content and expression of the corresponding terpene synthase genes when its transcription level was downregulated. Overexpression of SlSCL3 dramatically increased both the volatile terpene content and glandular trichome size, whereas its homozygous mutants showed reduced terpene biosynthesis. However, its heterozygous mutants also showed a significantly elevated volatile terpene content and enlarged glandular trichomes, similar to the overexpression plants. SlSCL3 modulates the expression of terpene biosynthetic pathway genes by transcriptional activation, but neither direct protein-DNA binding nor interaction with known regulators was observed. Moreover, transcript levels of the endogenous copy of SlSCL3 were decreased in the overexpression plants but increased in the heterozygous and homozygous mutants, suggesting feedback repression of its own promoter. Taken together, our results provide new insights into the role of SlSCL3 in the complex regulation of volatile terpene biosynthesis and glandular trichome development in tomato.


Assuntos
Proteínas de Plantas/genética , Solanum lycopersicum/fisiologia , Terpenos/metabolismo , Fatores de Transcrição/genética , Tricomas , Inativação Gênica , Heterozigoto , Mutação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Tricomas/anatomia & histologia , Tricomas/fisiologia , Compostos Orgânicos Voláteis/metabolismo
7.
Commun Biol ; 4(1): 562, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980981

RESUMO

Fungal unspecific peroxygenases (UPOs) represent an enzyme class catalysing versatile oxyfunctionalisation reactions on a broad substrate scope. They are occurring as secreted, glycosylated proteins bearing a haem-thiolate active site and rely on hydrogen peroxide as the oxygen source. However, their heterologous production in a fast-growing organism suitable for high throughput screening has only succeeded once-enabled by an intensive directed evolution campaign. We developed and applied a modular Golden Gate-based secretion system, allowing the first production of four active UPOs in yeast, their one-step purification and application in an enantioselective conversion on a preparative scale. The Golden Gate setup was designed to be universally applicable and consists of the three module types: i) signal peptides for secretion, ii) UPO genes, and iii) protein tags for purification and split-GFP detection. The modular episomal system is suitable for use in Saccharomyces cerevisiae and was transferred to episomal and chromosomally integrated expression cassettes in Pichia pastoris. Shake flask productions in Pichia pastoris yielded up to 24 mg/L secreted UPO enzyme, which was employed for the preparative scale conversion of a phenethylamine derivative reaching 98.6 % ee. Our results demonstrate a rapid, modular yeast secretion workflow of UPOs yielding preparative scale enantioselective biotransformations.


Assuntos
Oxigenases de Função Mista/biossíntese , Oxigenases de Função Mista/metabolismo , Engenharia de Proteínas/métodos , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/genética , Saccharomyces cerevisiae/genética , Saccharomycetales/genética
8.
Plant Commun ; 2(2): 100135, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33898975

RESUMO

The recent discovery of the mode of action of the CRISPR/Cas9 system has provided biologists with a useful tool for generating site-specific mutations in genes of interest. In plants, site-targeted mutations are usually obtained by the stable transformation of a Cas9 expression construct into the plant genome. The efficiency of introducing mutations in genes of interest can vary considerably depending on the specific features of the constructs, including the source and nature of the promoters and terminators used for the expression of the Cas9 gene and the guide RNA, and the sequence of the Cas9 nuclease itself. To optimize the efficiency of the Cas9 nuclease in generating mutations in target genes in Arabidopsis thaliana, we investigated several features of its nucleotide and/or amino acid sequence, including the codon usage, the number of nuclear localization signals (NLSs), and the presence or absence of introns. We found that the Cas9 gene codon usage had some effect on its activity and that two NLSs worked better than one. However, the highest efficiency of the constructs was achieved by the addition of 13 introns into the Cas9 coding sequence, which dramatically improved the editing efficiency of the constructs. None of the primary transformants obtained with a Cas9 gene lacking introns displayed a knockout mutant phenotype, whereas between 70% and 100% of the primary transformants generated with the intronized Cas9 gene displayed mutant phenotypes. The intronized Cas9 gene was also found to be effective in other plants such as Nicotiana benthamiana and Catharanthus roseus.


Assuntos
Proteínas de Arabidopsis/análise , Arabidopsis/genética , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Edição de Genes/métodos , Genoma de Planta , Íntrons , Arabidopsis/metabolismo , Edição de Genes/instrumentação
9.
Plant J ; 106(1): 8-22, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33577114

RESUMO

Genome editing by RNA-guided nucleases, such as SpCas9, has been used in numerous different plant species. However, to what extent multiple independent loci can be targeted simultaneously by multiplexing has not been well documented. Here, we developed a toolkit, based on a highly intron-optimized zCas9i gene, which allows assembly of nuclease constructs expressing up to 32 single guide RNAs (sgRNAs). We used this toolkit to explore the limits of multiplexing in two major model species, and report on the isolation of transgene-free octuple (8×) Nicotiana benthamiana and duodecuple (12×) Arabidopsis thaliana mutant lines in a single generation (T1 and T2 , respectively). We developed novel counter-selection markers for N. benthamiana, most importantly Sl-FAST2, comparable to the well-established Arabidopsis seed fluorescence marker, and FCY-UPP, based on the production of toxic 5-fluorouracil in the presence of a precursor. Targeting eight genes with an array of nine different sgRNAs and relying on FCY-UPP for selection of non-transgenic T1 , we identified N. benthamiana mutant lines with astonishingly high efficiencies: All analyzed plants carried mutations in all genes (approximately 112/116 target sites edited). Furthermore, we targeted 12 genes by an array of 24 sgRNAs in A. thaliana. Efficiency was significantly lower in A. thaliana, and our results indicate Cas9 availability is the limiting factor in such higher-order multiplexing applications. We identified a duodecuple mutant line by a combination of phenotypic screening and amplicon sequencing. The resources and results presented provide new perspectives for how multiplexing can be used to generate complex genotypes or to functionally interrogate groups of candidate genes.


Assuntos
Arabidopsis/genética , Plantas Geneticamente Modificadas/genética , Sistemas CRISPR-Cas/genética , Edição de Genes , Genoma de Planta/genética , Mutação/genética
10.
Methods Mol Biol ; 2205: 107-123, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32809196

RESUMO

Availability of efficient DNA assembly methods is a basic requirement for synthetic biology. A variety of modular cloning systems have been developed, based on Golden Gate cloning for DNA assembly, to enable users to assemble multigene constructs from libraries of standard parts using a series of successive one-pot assembly reactions. Standard parts contain the DNA sequence coding for a genetic element of interest such as a promoter , coding sequence or terminator . Standard parts for the modular cloning system MoClo must be flanked by two BsaI restriction sites and should not contain internal sequences for two type IIS restriction sites, BsaI and BpiI, and optionally for a third type IIS enzyme, BsmBI. We provide here a detailed protocol for cloning of basic parts. This protocol requires the following steps (1) defining the type of basic part that needs to be cloned, (2) designing primers for amplification, (3) performing PCR amplification, (4) cloning of the fragments using Golden Gate cloning, and finally (5) sequencing of the part. For large basic parts, it is preferable to first clone subparts as intermediate level -1 constructs. These subparts are sequenced individually and are then further assembled to make the final level 0 module.


Assuntos
Clonagem Molecular/métodos , DNA/genética , Primers do DNA/genética , Enzimas de Restrição do DNA/genética , Endonucleases/metabolismo , Engenharia Genética/métodos , Reação em Cadeia da Polimerase/métodos , Regiões Promotoras Genéticas/genética , Padrões de Referência , Biologia Sintética/métodos
11.
Methods Mol Biol ; 2205: 125-141, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32809197

RESUMO

Modular cloning systems that rely on type IIS enzymes for DNA assembly have many advantages for complex pathway engineering. These systems are simple to use, efficient, and allow users to assemble multigene constructs by performing a series of one-pot assembly steps, starting from libraries of cloned and sequenced parts. The efficiency of these systems also facilitates the generation of libraries of construct variants. We describe here a protocol for assembly of multigene constructs using the Modular Cloning system MoClo. Making constructs using the MoClo system requires users to first define the structure of the final construct to identify all basic parts and vectors required for the construction strategy. The assembly strategy is then defined following a set of standard rules. Multigene constructs are then assembled using a series of one-pot assembly steps with the set of identified parts and vectors.


Assuntos
Clonagem Molecular/métodos , DNA , Biblioteca Gênica , Engenharia Genética/métodos , Biologia Sintética/métodos
12.
Curr Protoc Mol Biol ; 130(1): e115, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32159931

RESUMO

Methods that enable the construction of recombinant DNA molecules are essential tools for biological research and biotechnology. Golden Gate cloning is used for assembly of multiple DNA fragments in a defined linear order in a recipient vector using a one-pot assembly procedure. Golden Gate cloning is based on the use of a type IIS restriction enzyme for digestion of the DNA fragments and vector. Because restriction sites for the type IIS enzyme used for assembly must be present at the ends of the DNA fragments and vector but absent from all internal sequences, special care must be taken to prepare DNA fragments and the recipient vector with a structure suitable for assembly by Golden Gate cloning. In this article, protocols are presented for preparation of DNA fragments, modules, and vectors suitable for Golden Gate assembly cloning. Additional protocols are presented for assembly of defined parts in a transcription unit, as well as the stitching together of multiple transcription units into multigene constructs by the modular cloning (MoClo) pipeline. © 2020 The Authors. Basic Protocol 1: Performing a typical Golden Gate cloning reaction Basic Protocol 2: Accommodating a vector to Golden Gate cloning Basic Protocol 3: Accommodating an insert to Golden Gate cloning Basic Protocol 4: Generating small standardized parts compatible with hierarchical modular cloning (MoClo) using level 0 vectors Alternate Protocol: Generating large standardized parts compatible with hierarchical modular cloning (MoClo) using level -1 vectors Basic Protocol 5: Assembling transcription units and multigene constructs using level 1, M, and P MoClo vectors.


Assuntos
Clonagem Molecular/métodos , DNA/genética , Escherichia coli/genética , Engenharia Genética/métodos , Sequência de Bases , Enzimas de Restrição do DNA/metabolismo , Vetores Genéticos , Plasmídeos/genética , Regiões Promotoras Genéticas , Transcrição Gênica
13.
Plant Cell ; 32(5): 1727-1748, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32156687

RESUMO

The exine of angiosperm pollen grains is usually covered by a complex mix of metabolites including pollen-specific hydroxycinnamic acid amides (HCAAs) and flavonoid glycosides. Although the biosynthetic pathways resulting in the formation of HCAAs and flavonol glycosides have been characterized, it is unclear how these compounds are transported to the pollen surface. In this report we provide several lines of evidence that a member of the nitrate/peptide transporter family is required for the accumulation and transport of pollen-specific flavonol 3-o-sophorosides, characterized by a glycosidic ß-1,2-linkage, to the pollen surface of Arabidopsis (Arabidopsis thaliana). Ectopic, transient expression in Nicotiana benthamiana epidermal leaf cells demonstrated localization of this flavonol sophoroside transporter (FST1) at the plasmalemma when fused to green fluorescent protein (GFP). We also confirmed the tapetum-specific expression of FST1 by GFP reporter lines driven by the FST1 promoter. In vitro characterization of FST1 activity was achieved by microbial uptake assays based on 14C-labeled flavonol glycosides. Finally, rescue of an fst1 insertion mutant by complementation with an FST1 genomic fragment restored the accumulation of flavonol glycosides in pollen grains to wild-type levels, corroborating the requirement of FST1 for transport of flavonol-3-o-sophorosides from the tapetum to the pollen surface.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flavonóis/metabolismo , Glicosídeos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Pólen/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico , DNA Bacteriano/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Germinação , Proteínas de Membrana Transportadoras/genética , Modelos Biológicos , Mutação/genética , Filogenia , Epiderme Vegetal/citologia , Extratos Vegetais/química , Pólen/ultraestrutura , Regiões Promotoras Genéticas/genética , Propanóis/química , Propanóis/metabolismo , Frações Subcelulares/metabolismo , Sobrevivência de Tecidos , Transcrição Gênica , Raios Ultravioleta
14.
Funct Integr Genomics ; 20(1): 151-162, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30796544

RESUMO

Genetic resources for the model plant Arabidopsis comprise mutant lines defective in almost any single gene in reference accession Columbia. However, gene redundancy and/or close linkage often render it extremely laborious or even impossible to isolate a desired line lacking a specific function or set of genes from segregating populations. Therefore, we here evaluated strategies and efficiencies for the inactivation of multiple genes by Cas9-based nucleases and multiplexing. In first attempts, we succeeded in isolating a mutant line carrying a 70 kb deletion, which occurred at a frequency of ~ 1.6% in the T2 generation, through PCR-based screening of numerous individuals. However, we failed to isolate a line lacking Lhcb1 genes, which are present in five copies organized at two loci in the Arabidopsis genome. To improve efficiency of our Cas9-based nuclease system, regulatory sequences controlling Cas9 expression levels and timing were systematically compared. Indeed, use of DD45 and RPS5a promoters improved efficiency of our genome editing system by approximately 25-30-fold in comparison to the previous ubiquitin promoter. Using an optimized genome editing system with RPS5a promoter-driven Cas9, putatively quintuple mutant lines lacking detectable amounts of Lhcb1 protein represented approximately 30% of T1 transformants. These results show how improved genome editing systems facilitate the isolation of complex mutant alleles, previously considered impossible to generate, at high frequency even in a single (T1) generation.


Assuntos
Arabidopsis/genética , Proteína 9 Associada à CRISPR/genética , Edição de Genes/métodos , Alelos , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Deleção de Genes , Genoma de Planta , Mutação , Regiões Promotoras Genéticas , Ubiquitina/genética
15.
Sci Rep ; 9(1): 10932, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358887

RESUMO

Site-directed methods for the generation of genetic diversity are essential tools in the field of directed enzyme evolution. The Golden Gate cloning technique has been proven to be an efficient tool for a variety of cloning setups. The utilization of restriction enzymes which cut outside of their recognition domain allows the assembly of multiple gene fragments obtained by PCR amplification without altering the open reading frame of the reconstituted gene. We have developed a protocol, termed Golden Mutagenesis that allows the rapid, straightforward, reliable and inexpensive construction of mutagenesis libraries. One to five amino acid positions within a coding sequence could be altered simultaneously using a protocol which can be performed within one day. To facilitate the implementation of this technique, a software library and web application for automated primer design and for the graphical evaluation of the randomization success based on the sequencing results was developed. This allows facile primer design and application of Golden Mutagenesis also for laboratories, which are not specialized in molecular biology.


Assuntos
Primers do DNA/genética , Mutagênese , Análise de Sequência de DNA/métodos , Software , Animais , Primers do DNA/química , Primers do DNA/normas , Humanos , Análise de Sequência de DNA/normas
16.
Plant Cell ; 31(5): 1043-1062, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30894458

RESUMO

The function of the plant hormone jasmonic acid (JA) in the development of tomato (Solanum lycopersicum) flowers was analyzed with a mutant defective in JA perception (jasmonate-insensitive1-1, jai1-1). In contrast with Arabidopsis (Arabidopsis thaliana) JA-insensitive plants, which are male sterile, the tomato jai1-1 mutant is female sterile, with major defects in female development. To identify putative JA-dependent regulatory components, we performed transcriptomics on ovules from flowers at three developmental stages from wild type and jai1-1 mutants. One of the strongly downregulated genes in jai1-1 encodes the MYB transcription factor SlMYB21. Its Arabidopsis ortholog plays a crucial role in JA-regulated stamen development. SlMYB21 was shown here to exhibit transcription factor activity in yeast, to interact with SlJAZ9 in yeast and in planta, and to complement Arabidopsis myb21-5 To analyze SlMYB21 function, we generated clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR associated protein 9 (Cas9) mutants and identified a mutant by Targeting Induced Local Lesions in Genomes (TILLING). These mutants showed female sterility, corroborating a function of MYB21 in tomato ovule development. Transcriptomics analysis of wild type, jai1-1, and myb21-2 carpels revealed processes that might be controlled by SlMYB21. The data suggest positive regulation of JA biosynthesis by SlMYB21, but negative regulation of auxin and gibberellins. The results demonstrate that SlMYB21 mediates at least partially the action of JA and might control the flower-to-fruit transition..


Assuntos
Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/genética , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Regulação para Baixo , Fertilidade , Flores/genética , Flores/fisiologia , Frutas/genética , Frutas/fisiologia , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/fisiologia , Mutação , Óvulo Vegetal/genética , Óvulo Vegetal/fisiologia , Fenótipo , Infertilidade das Plantas , Proteínas de Plantas/genética , Fatores de Transcrição/genética
17.
Methods Mol Biol ; 1927: 93-109, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30788787

RESUMO

Efficient DNA assembly methods are essential tools for synthetic biology and metabolic engineering. Among several recently developed methods that allow assembly of multiple DNA fragments in a single step, DNA assembly using type IIS enzymes provides many advantages for complex pathway engineering. In particular, it provides the ability for the user to quickly assemble multigene constructs using a series of simple one-pot assembly steps starting from libraries of cloned and sequenced parts. We describe here a protocol for assembly of multigene constructs using the modular cloning system (MoClo). Making constructs using the MoClo system requires to first define the structure of the final construct to identify all basic parts and vectors required for the construction strategy. Basic parts that are not yet available need to be made. Multigene constructs are then assembled using a series of one-pot assembly steps with the set of identified parts and vectors.


Assuntos
Enzimas de Restrição do DNA/metabolismo , Engenharia Genética , Biologia Sintética , Clonagem Molecular , Ordem dos Genes , Engenharia Genética/métodos , Vetores Genéticos , Biologia Sintética/métodos , Transcrição Gênica
18.
ACS Synth Biol ; 8(3): 532-547, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30694661

RESUMO

Type III secretion (T3S) systems are essential pathogenicity factors of most Gram-negative bacteria and translocate effector proteins into plant or animal cells. T3S systems can, therefore, be used as tools for protein delivery into eukaryotic cells, for instance after transfer of the T3S gene cluster into nonpathogenic recipient strains. Here, we report the modular cloning of the T3S gene cluster from the plant-pathogenic bacterium Xanthomonas euvesicatoria. The resulting multigene construct encoded a functional T3S system and delivered effector proteins into plant cells. The modular design of the T3S gene cluster allowed the efficient replacement and rearrangement of single genes or operons and the insertion of reporter genes for functional studies. In the present study, we used the modular T3S system to analyze the assembly of a fluorescent fusion of the predicted cytoplasmic ring protein HrcQ. Our studies demonstrate the use of the modular T3S gene cluster for functional analyses and mutant approaches in X. euvesicatoria. A potential application of the modular T3S system as protein delivery tool is discussed.


Assuntos
Clonagem Molecular/métodos , Família Multigênica , Plantas/microbiologia , Sistemas de Secreção Tipo III/genética , Xanthomonas/genética , Proteínas de Bactérias/genética , Retroalimentação Fisiológica , Regulação Bacteriana da Expressão Gênica , Genes Reporter , Vetores Genéticos , Proteínas de Fluorescência Verde/metabolismo , Óperon/genética , Fenótipo , Biossíntese de Proteínas/genética , Transporte Proteico
19.
PLoS One ; 13(5): e0197185, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29847550

RESUMO

Standardized DNA assembly strategies facilitate the generation of multigene constructs from collections of building blocks in plant synthetic biology. A common syntax for hierarchical DNA assembly following the Golden Gate principle employing Type IIs restriction endonucleases was recently developed, and underlies the Modular Cloning and GoldenBraid systems. In these systems, transcriptional units and/or multigene constructs are assembled from libraries of standardized building blocks, also referred to as phytobricks, in several hierarchical levels and by iterative Golden Gate reactions. Here, a toolkit containing further modules for the novel DNA assembly standards was developed. Intended for use with Modular Cloning, most modules are also compatible with GoldenBraid. Firstly, a collection of approximately 80 additional phytobricks is provided, comprising e.g. modules for inducible expression systems, promoters or epitope tags. Furthermore, DNA modules were developed for connecting Modular Cloning and Gateway cloning, either for toggling between systems or for standardized Gateway destination vector assembly. Finally, first instances of a "peripheral infrastructure" around Modular Cloning are presented: While available toolkits are designed for the assembly of plant transformation constructs, vectors were created to also use coding sequence-containing phytobricks directly in yeast two hybrid interaction or bacterial infection assays. The presented material will further enhance versatility of hierarchical DNA assembly strategies.


Assuntos
Clonagem Molecular/métodos , Engenharia Genética/métodos , Vetores Genéticos/química , Proteínas de Plantas/genética , Plasmídeos/química , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Calmodulina/genética , Calmodulina/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Vetores Genéticos/metabolismo , Fases de Leitura Aberta , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo
20.
New Phytol ; 217(4): 1749-1763, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29194629

RESUMO

Ubiquitination is mediated by an enzymatic cascade that results in the modification of substrate proteins, redefining their fate. This post-translational modification is involved in most cellular processes, yet its analysis faces manifold obstacles due to its complex and ubiquitous nature. Reconstitution of the ubiquitination cascade in bacterial systems circumvents several of these problems and was shown to faithfully recapitulate the process. Here, we present UbiGate - a synthetic biology toolbox, together with an inducible bacterial expression system - to enable the straightforward reconstitution of the ubiquitination cascades of different organisms in Escherichia coli by 'Golden Gate' cloning. This inclusive toolbox uses a hierarchical modular cloning system to assemble complex DNA molecules encoding the multiple genetic elements of the ubiquitination cascade in a predefined order, to generate polycistronic operons for expression. We demonstrate the efficiency of UbiGate in generating a variety of expression elements to reconstitute autoubiquitination by different E3 ligases and the modification of their substrates, as well as its usefulness for dissecting the process in a time- and cost-effective manner.


Assuntos
Biologia Sintética/métodos , Ubiquitinação , Arabidopsis/genética , Genes de Plantas , Vetores Genéticos/metabolismo , Óperon/genética , Transdução de Sinais , Especificidade por Substrato , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...